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Repeated cycles of Quaternary glaciation have had a major impact on the morphology and shallow sub-surface prop-
erties of much of the UK landscape and continental shelf. Understanding the extent of glaciation involves understand-
ing of our landscape history but is also critical to the broad range of applied users that interact with the shallow sub-
surface including engineers, hydrogeologists, planners and decision makers. Numerous interpretations of the onshore 
extent of the Anglian and Late Devensian glaciations have been published. However, many are not clearly evidenced 
or justified, being sometimes based on anecdotal evidence or supposition, with the levels of associated uncertainty 
not effectively communicated. As part of this work, the long-term record of Quaternary glaciation within the UK is 
reviewed and the types of geological and geomorphological information that can be employed to interpret their for-
mer extent are assessed. We also examine the range of factors that may influence the relative preservation of this ev-
idence. As part of this assessment, we recommend abandoning the term ‘glacial limit’ (and other related synonyms) 
when interpreting the extent of glaciation within the geological record. Instead, we recommend using the term limit 
of preserved evidence which more accurately reflects the spatial context of such evidence. Finally, we present new on-
shore linework for the limit of preserved evidence of both the Anglian and Late Devensian glaciations, presenting how 
this linework was captured and the associated levels of uncertai nty.
© 2025 The Geologists' Association. Published by Elsevier Ltd. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). 
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1. Introduction 

Over the past 2.588 million years (the Quaternary Period) of Earth his-
tory, glaciers have been one of the most significant agents of landscape 
change across the UK landmass and continental shelf (Bowen et al., 
1986; Sutherland and Gordon, 1993; Clark et al., 2004a; Sejrup et al., 
2005; Stoker et al., 2011; Lee et al., 2018; Hall et al., 2019; Merritt et al., 
2019; Goudie, 2020). Glaciers act to amplify and sculpt the topography, 
transferring sediment from upland areas into lowland and basinal sinks 
and variably eroding, deforming and concealing the underlying geology 
in the process. Over the past 40 years there have been significant advances 
in our understanding of the glacial history of the UK. This has been driven 
by: (1) improved accuracy and precision of geochronological techniques 
(Böse et al., 2012; Lowe and Walker, 2014; Clark et al., 2022); (2) the avail-
ability of high quality topographic imaging of formerly glaciated areas 
within both onshore and offshore environments (e.g., Bradwell et al., 
2008; Clark et al., 2004b, 2018, 2022; Livingstone et al., 2012); (3) im-
proved accessibility of 2D and/or 3D seismic data in offshore areas 
 by Elsevier Ltd. This is an open acces
(Eaton et al., 2020; Stewart and Lonergan, 2011; Praeg et al., 2015; 
Cotterill et al., 2017; Dove et al., 2017; Newton et al., 2024); and (4) en-
hanced understanding of subglacial/ice-marginal processes and glacial 
landsystems (Murray, 1997; Evans, 2003; Benn and Evans, 2014). 

Current understanding now demonstrates that glaciers have been 
active components of the UK landscape throughout much of the Quater-
nary (Böse et al., 2012; Lee et al., 2012; Rea et al., 2018; Hall et al., 2019; 
Clark et al., 2022) with repeated expansions of ice onto the NW 
European continental margin (Stoker et al., 1994; Sejrup et al., 2005; 
Thierens et al., 2012; Bradwell et al., 2021) and adjacent areas of conti-
nental shelf including the North Sea Basin (Stewart and Lonergan, 2011; 
Dowdeswell and Ottesen, 2013; Rea et al., 2018; Kirkham et al., 2021). 
The onshore record of glaciation in the UK is more temporally 
constrained, restricted to the most recent (Younger Dryas Stadial) 
(Bickerdike et al., 2018a) and larger phases (e.g., Anglian and Late 
Devensian) of glaciation (Bowen et al., 1986; Clark et al., 2004a, 
2004b, 2022; Chiverrell and Thomas, 2010; Gibbard and Clark, 2011; 
Lee et al., 2011). Possible earlier and intervening phases of glaciation 
within the current onshore record are also indicated (e.g., Davies et al., 
2009; White et al., 2017; Evans et al., 2019b; Gibson et al., 2022; 
Gibson and Gibbard, 2024; Scourse, 2024) but the evidence is more dis-
crete, subjective and sometimes open to several interpretations.
s article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
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The onshore extent of the Anglian and Late Devensian glaciations 
has attracted the curiosity of scientists for well over 100 years but 
there remains significant ongoing regional and/or local uncertainty. 
This reflects: (1) ambiguity of the interpreted evidence itself; (2) a 
lack of historical clarity relating to how an interpretation is justified; 
and (3) what the term ‘glacial limit’ means in practical terms. The 
interpreted extent of glaciation is often illustrated by lines shown 
within figures and maps, but the level of justification and uncertainty 
associated with that linework is often inconsistently or poorly commu-
nicated. This information is critical not only to underpin scientific  rigour  
and informed debate but also because many of our current and future 
socio-economic needs interact with the Quaternary — specifically 
areas that have been previously glaciated. Glaciation drives a variable 
range of tectonic and sedimentary processes which introduce lithologi-
cal and structural heterogeneity to the shallow sub-surface which can 
impact its properties and behaviour (e.g., Le et al., 2014; McEvoy et al., 
2016; de Freitas et al., 2017; Giles et al., 2017; Clarke, 2018; Moore 
et al., 2022). This can create a significant geological risk which in turn 
causes a socio-economic risk to applied users, for example, foundation 
conditions for buildings and infrastructure (e.g., tunnelling, cuttings, 
cable routes, wind turbines); managing transport, energy and utility in-
frastructure; sustainable management of resources such as soils, water 
and mineral aggregates; and the management of geological hazards 
(e.g., landslides, coastal erosion). 

Within this paper we firstly review the evidence for glaciation 
within the UK, in particular highlighting glaciations where so-called 
‘glacial limits’ have previously been proposed. Secondly, we assess the 
types of geological and geomorphological evidence that can be used to 
constrain the extent of Quaternary glaciations, factors that regulate 
their preservation within the geological record, and recommend refined 
nomenclature. Finally, we apply this approach and present newly con-
structed limits of preserved evidence for both the onshore Anglian and 
Late Devensian glaciations .

2. The UK glacial record 

The significance of glaciers and glaciation in shaping the UK land-
scape was first recognised during the mid-nineteenth century 
(Agassiz, 1840; Buckland, 1840). Since then, an improved understand-
ing of our long-term glacial history has progressively emerged, 
underpinned by an understanding of our onshore geological record 
and increasingly the record from the UK Continental Shelf (UKCS) 
(West, 1977; Bowen et al., 1986; Clark et al., 2004b; Gibbard and 
Clark, 2011; Lee et al., 2012). Allied to this have been significant im-
provements in geochronological methods and our understanding of gla-
cial processes and landsystems (Evans, 2003; Böse et al., 2012; Clark 
et al., 2012, 2022; Benn and Evans, 2014). Within this section of the 
paper, we review current understanding of the glacial history of the 
UK (Fig. 1).

2.1. Early and early Middle Pleistocene glaciations 

Over the course of the past 30 years, a growing body of evidence 
demonstrates that highland areas of northern and western Britain 
were extensively glaciated during the Early and early Middle Pleisto-
cene, with repeated glacier expansion onto the adjacent continental 
shelf and margin. Evidence includes: (1) long-term records of glacigenic 
input onto debris fans along the NW European continental margin 
(Stoker et al., 1994; Sejrup et al., 2005); (2) ice rafted debris (IRD) re-
cords from deeper basinal areas (Bailey et al., 2012; Thierens et al., 
2012); and (3) glacially-eroded sediment input into the Bay of Biscay 
from 1.2 Ma (Toucanne et al., 2009). Evidence for glaciation has been 
recognised extensively within the North Sea Basin within seismic data, 
including multiple generations of iceberg scour marks (Dowdeswell 
and Ottesen, 2013; Rea et al., 2018); subglacial tunnel valleys 
(Graham et al., 2007, 2011; Stewart and Lonergan, 2011; Stewart 
et al., 2013; Ottesen et al., 2020; Kirkham et al., 2021); and other land-
forms including moraines, megascale glacial lineations, crevasse-
squeeze ridges, thrust structures and glacitectonic hill–hole pairs 
(Newton et al., 2024). Onshore, evidence for glaciation is more discrete 
and includes the presence of glacial erratics within river terrace se-
quences of the Ancestral Thames (Whiteman and Rose, 1992; Rose 
et al., 1999, 2010), glacially-sourced heavy mineral assemblages (Lee, 
2009) and erratics (Larkin et al., 2011; Hoare, 2012) from northern Brit-
ain and Scandinavia within shallow marine deposits in eastern England. 
No attempts have been made to rigorously define the extent of these 
glaciations. An incursion of ice into northern East Anglia during Marine 
Isotope Stage (MIS 16) has also been proposed previously — the so-
called ‘Happisburgh Glaciation’ (Lee et al., 2004; Hamblin et al., 2005; 
Rose, 2009). The status and timing of this glaciation remain unclear 
due to the: (1) absence of geochronological constraint; (2) problems re-
solving the Bytham terrace sequence which has been used to delineate 
this glaciation from the later Anglian Glaciation (Lewis, 1993; 
Westaway, 2009; Lee et al., 2004, 2020; Lewis et al., 2021); and 
(3) the presence of biostratigraphical and amino acid evidence which 
does not delineate this glaciation from the Anglian (Preece et al., 2009). 

2.2. Late Middle Pleistocene glaciation: Anglian 

The Anglian (Elsterian) Glaciation (Marine Isotope Stage (MIS) 12; 
0.48–0.43 Ma) is the largest known and earliest glaciation to have af-
fected the UK during the Quaternary for which there is widespread on-
shore geological evidence. The age of the Anglian glaciation is 
constrained by: (1) amino acid racemisation (AAR), uranium-series 
(U–Th) and Electron Spin Resonance dating of interglacial deposits 
that underlie and/or overlie Anglian glacial deposits in East Anglia 
(Rink et al., 1996; Rowe et al., 1999; Grün and Schwarz, 2000; Preece 
et al., 2007, 2009) and (2) optically stimulated luminescence (OSL) dat-
ing of Anglian-age river terrace deposits (Pawley et al., 2010) and glacial 
outwash deposits in north Norfolk that cap the glacial sequence 
(Pawley et al., 2008). The glaciation is widely understood to have initi-
ated the development of modern drainage across parts of central, south-
ern and eastern England (Gibbard, 1988; Bridgland, 2010)  with
meltwater making the initial incision through the Straits of Dover 
(Gibbard, 1988; Gupta et al., 2007). Offshore within the UK sector of 
the Southern North Sea, evidence for the Anglian is indicated by the 
presence of numerous deeply-incised and partially-infilled subglacial 
tunnel valleys (Cameron et al., 1987, 1992; Scourse et al., 1998; 
Mellett et al., 2020); however the offshore extent of this glaciation re-
mains poorly constrained. Onshore, glacial deposits occur extensively 
across the English Midlands and East Anglia (Shotton, 1953; Bishop, 
1958; Perrin et al., 1979; Rice, 1981; Hart and Boulton, 1991; Lunkka, 
1994; Rose, 2009; Lee et al., 2017) and potentially as discrete outliers 
within the Malvern Hills (Richards, 1999), the Lower Severn Valley 
(Maddy et al., 1995) and Bristol (Gilbertson and Hawkins, 1978)  al-
though some of these latter localities have no independent age control 
and may not represent the full glacial extent. At its maximum known 
onshore extent, Anglian ice therefore reached the northern outskirts 
of London and southern East Anglia where it is relatively well 
constrained (Clayton, 1957; Perrin et al., 1979; Allen et al., 1991; 
Leszczynska et al., 2017). To the west of London however, extending 
across the South Midlands and into southwest England, the extent of 
the Anglian Glaciation remains poorly defined (Price, 2019; Scourse, 
2019)  (Fig. 2) where evidence appears to have been largely removed 
by slope and fluvial processes (Price, 2019). Further to the west in 
north Devon, glacial deposits at Fremington (Arber, 1964; Kidson and 
Wood, 1974) remain somewhat enigmatic with a range of different 
Middle and Late Pleistocene age interpretations (Rolfe, 2015; Scourse, 
2024; Bennett et al., 2024). For the purpose of this study, it is assumed 
that the maximum likely age of these deposits is Anglian, and they are 
therefore included within the Anglian ‘limit’ presented below. However, 
we fully acknowledge that their absolute age may be younger. Various
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Fig. 1. The Quaternary timescale showing the marine isotope record (based on Lisiecki and Raymo, 2005) and projected temperate (pink) and cold (blue) stage intervals. Superimposed 
upon this timescale is evidence for the long-term glacial history of the UK utilising direct (e.g., tills, landforms) and indirect (e.g., IRD, erratics) on the onshore and offshore records. Data 
from: Sejrup et al. (2005); Graham et al. (2011), Stewart and Lonergan (2011), Lee et al. (2012), Thierens et al. (2012), Rea et al. (2018) and Scourse (2024). Note that there is considerable 
uncertainty on the timing on many of the older events.
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Fig. 2. Historical interpretations of the Anglian glacial limit. The eastern sectors of all three lines are in general agreement with local differences in interpretation likely reflecting subtle 
differences in interpretation, the scale of interpretation and linework compilation methods. Within the Lower Severn Valley and extending west, there are fundamental differences in 
interpretation between several of the studies. For example, three of the studies interpret the Anglian limit as extending along the northern flanks of Somerset, Devon and Cornwall, 
with one indicating that ice reached the Isles of Scilly. Derived in part from DTM of Great Britain at 5 m resolution © Bluesky International Limited. Esri “World Topographic Map”.  J  an  
4, 2024. Esri Sources: Esri, Ordnance Survey. 
historical interpretations have also inferred the widespread presence of 
Anglian ice abutting the southern flanks of the Bristol Channel, extend-
ing along the coast of north Devon and Cornwall. With the exception of 
possible evidence from Fremington outlined above — which is caveated 
by the caution indicated, there is no widespread evidence to support “… 
the notion of an Anglian Glaciation off the northern coast of southwest 
England, an idée fixe of the Quaternary community for several de-
cades…” (Scourse, 2019,  p.  6)  .

2.3. Late Middle Pleistocene glaciation: other 

Much debate, both historic and present day, has focussed on the pos-
sibility of additional post-Anglian Middle Pleistocene glaciations. During 
the post-Anglian late Middle Pleistocene (MISs 10–6), discussion has 
centred on the occurrence of a so-called ‘Wolstonian’ glaciation within 
the English Midlands and East Anglia (West and Donner, 1956; Straw, 
1979, 1983; Shotton, 1983; Rose, 1987; Lewis, 1993; Hamblin et al., 
2005; Gibbard et al., 2012, 2021; Bridgland et al., 2015; White et al., 
2017; Langford, 2018; Rose et al., 2021; Gibson et al., 2022). Hitherto, 
resolving this issue has proven highly challenging. This reflects the 
often fragmented and indirect (e.g., drainage reorganisation) nature of 
the evidence; the potential for alternate interpretations; apparent con-
flicts with other types of evidence; the general lack of unambiguous in-
dicators of glaciation; and the availability of reliable absolute age 
control. Currently, there is growing speculation indicating the presence 
of at least one additional lowland glaciation in central and eastern En-
gland during MIS 10 (Rose et al., 2021), MIS 8 (White et al., 2010, 
2017; Bridgland et al., 2015), MIS 6 (Gibbard et al., 1992, 2018; Evans 
et al., 2019b; Gibson et al., 2022)  or  both  MISs  8  and 6 (Langford, 
2018). Offshore the picture remains uncertain. MIS 8 and 6 glacial 
deposits have been recognised within the Dutch sector of the Southern 
North Sea (e.g., Laban and van der Meer, 2011; Cartelle et al., 2021). 
However, whilst the presence of MIS 6 ice has been indicated within 
the British sector of the Southern North Sea (e.g., Clark et al., 2018; 
Gibson and Gibbard, 2024), no tills of MIS 6 (or MIS 8 or MIS 10) have 
yet been identified (Cameron et al., 1992; Lee et al., 2012)  (Fig. 3).

2.4. Late Pleistocene: Early Devensian glaciation 

The presence of a glaciation during the Early Devensian (MISs 5d–4) 
prior to the Late Devensian (MIS 2) has also stimulated significant de-
bate (Mitchell et al., 1973; Bowen et al., 1986; McCabe, 1987; Gibbard 
et al., 2022; Scourse, 2024). Key elements of the discussion have fo-
cussed on the application and significance of different geochronological 
methods (Bowen et al., 2002; McCarroll, 2002; Hall et al., 2003) and the 
pre-MIS 2 timing of the initial inception of the Last British–Irish Ice 
Sheet especially in Scotland (Hall et al., 2003; Merritt et al., 2017). 
Provenanced IRD from the European continental margin provides com-
pelling evidence for the existence of marine-terminating glaciers within 
Britain during either part (Scourse et al., 2009; Fabian et al., 2023; 
Toucanne et al., 2023)  or  all  (Hibbert et al., 2010) of the last cold stage 
(MISs 5d–2). Offshore cores from the Goban Spur and the Bay of Biscay 
indicate the presence of marine terminating ice in western UK/Ireland 
during MIS 4 (Fabian et al., 2023; Toucanne et al., 2023) although the 
overall extent of ice was likely limited (Scourse, 2024). Additional evi-
dence for Early Devensian glaciation in the UK includes cosmogenic ex-
posure ages from exposed bedrock surfaces in North Wales (Hughes 
et al., 2022), Lundy (Rolfe et al., 2012; Carr et al., 2017), and glacial out-
wash deposits in Cheshire (Rex et al., 2023) and Scotland (Duller et al., 
1995; Bradwell et al., 2021).
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Fig. 3. Historical interpretations of the Late Devensian glacial limit within the UK. There is a consensus within the historical linework of the broad geometric extent of the Late Devensian 
glaciation. However, there is notable divergence in southwest England, with Booth et al. (2015) acknowledging other published research in that glaciation of the Isles of Scilly occurred 
during the Late Devensian and not the Anglian as previously considered (see also Fig. 2). Locally, there are spatial differences (up to km scale) in the positioning of the linework 
reflecting likely differences in interpretation and the method and resolution of data capture. Derived in part from DTM of Great Britain at 5 m resolution © Bluesky International 
Limited. Esri “World Topographic Map”. Jan 4, 2024. Esri Sources: Esri, Ordnance Survey.
2.5. Late Pleistocene: Late Devensian glaciation 

During the Late Pleistocene, the UK was glaciated by an additional 
major glaciation for which there is abundant preserved evidence — the 
Late Devensian/Weichselian (MIS 2 c.,  30–16 ka). Evidence for this glaci-
ation is reflected by the extensive range of glacial sediments and relatively 
fresh landforms that have been mapped onshore across much of northern 
and central England, and offshore within the Irish and North Sea basins 
and  around  the  continental  margin (e.g., Clark et al., 2004a, 2018; Evans 
et al., 2009; Livingstone et al., 2010, 2012; Hughes et al., 2014; Dove 
et al., 2017; Chiverrell et al., 2021). The onshore extent of the Late 
Devensian glaciation is relatively well established because of the better-
preserved (compared to the Anglian) archive of sediments and landforms, 
although issues persist locally where the field evidence is ambiguous. 
Within the Vale of York, the Escrick Moraine is widely interpreted as 
the southern-most limit of Late Devensian ice (Ford et al., 2008), however 
others have speculated that ice may have extended southwards into 
South Yorkshire and Lincolnshire based on the presence of possible glacial 
outwash deposits (Gaunt, 1994; Friend et al., 2016). However, without 
clear evidence for grounded ice (e.g., a mapped subglacial till, glacitectonic 
features) the Escrick Moraine is utilised here as the southern-most known 
extension of Vale of York ice. 

Much of the recent research on the Late Devensian has, under the 
auspices of the BRITICE2 project, focussed on better constraining the 
chronology of ice sheet development and patterns of ice-marginal ad-
vance and retreat. This body of research has demonstrated the 
diachronous behaviour of different sectors of the ice sheet, reflecting 
both climatic and internal glaciological controls on ice sheet behaviour 
(Roberts et al., 2018; Benetti et al., 2021; Evans et al., 2021b; Scourse 
et al., 2021; Clark et al., 2022). Significantly improved understanding
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of the offshore extent of this glaciation has also resulted from the 
BRITICE2 programme (Clark et al., 2022). 

2.6. Younger Dryas glaciation 

A considerable body of research has also focussed on a third and 
most recent phase of glaciation, corresponding to the short-lived Youn-
ger Dryas (Greenland Stadial 1/GS-1; c.,  12.9–11.7 ka) event 
(Rasmussen et al., 2006), often referred to as the Loch Lomond Stadial 
in the UK. During the Younger Dryas, the temporary switching-off of 
thermohaline circulation in the North Atlantic (caused by the collapse 
of the Laurentide Ice Sheet in North America) led to a rapid drop in tem-
peratures across northern Europe and the UK. This initiated the rapid 
growth of localised ice caps and/or expansion of small valley glaciers 
across many highland parts of northern and western UK (Hughes, 
2009; Golledge, 2010; Bendle and Glasser, 2012; McDougall, 2013; 
Boston et al., 2015; Bickerdike et al., 2018a,b). The importance of the 
Younger Dryas event is that it was a short-lived sub-Milankovitch 
scale glacial event, demonstrating the susceptibility of the UK landscape 
to glacier inception. The extent of the Younger Dryas has not been 
assessed within this study as modern interpretations have been pub-
lished elsewhere (Bickerdike et al., 2018a). 

3. Key evidence and terminology for defining the onshore extent of 
glaciation 

3.1. Context 

The term ‘glacial limit’ and other similar descriptive nomenclature 
have been widely used by geologists to communicate the maximum 
interpreted extent of major periods of glaciation during the Quaternary 
and are historically represented on published figures and maps by 
means of a line. Within a modern glacial environment, this interpreta-
tion can often be undertaken either directly (i.e., observed) or captured 
using historical aerial photography or satellite data. However, within 
geological examples, the placement of a ‘glacial limit’ is always a subjec-
tive interpretation utilising, where preserved, geological and/or geo-
morphological information and varying degrees of conjecture in areas 
where information is limited or absent. This raises an obvious need for 
scientific transparency and the requirement to justify how an interpre-
tation has been constructed. Relevant information being: (1) what evi-
dence has been used; (2) what uncertainties are linked to this evidence; 
(3) where and what conjecture has been used; (4) the underpinning as-
sumptions of this conjecture; and (5) alternative interpretations. With-
out this transparency, informed debate becomes restricted, and this can 
lead to concepts becoming accepted as facts without effective scientific 
rigour or scrutiny. Within this section of the paper, the types of geolog-
ical and geomorphological evidence used to interpret an onshore ‘glacial 
limit’ are considered, key scientific assumptions are evaluated, and use 
of the term ‘glacial limit’ is critically exam ined.

3.2. Diagnostic evidence of an onshore glacial limit 

3.2.1. Extent of subglacial till 
The mapped spatial extent of subglacial tills has been widely used in 

the UK Quaternary to help interpret the onshore extent of the Anglian 
and Late Devensian glaciations. Although not explicitly acknowledged 
within published interpretations, the use of subglacial till extent implies 
two underpinning assumptions. Firstly, that a grounded glacier advance 
will always produce a subglacial traction till; and secondly, that the 
outer extent of a till sheet corresponds to the maximum glacier extent. 
Recent developments in the understanding of subglacial processes 
demonstrate that whilst subglacial traction tills provide excellent evi-
dence for the presence of grounded ice, tills are not produced ubiqui-
tously across the entire subglacial bed including within ice-marginal 
areas (Benn and Evans, 2014). 
Thermal regime plays an important role in regulating till development 
beneath glaciers. In crude terms, glacier thermal regime can be subdivided 
between three members: cold-based glaciers that characterised many up-
land areas of the UK during the Quaternary, warm-based that occupied 
more lowland and basinal settings and intermediate polythermal glaciers 
where the thermal regime varies spatially — for example, cold-based 
around the snout, glacier margins/sides and surface and warm-based in 
the thicker accumulation areas (Hambrey and Glasser, 2012). 

Historically, it has been argued that subglacial traction tills are not 
widely produced beneath cold-based glaciers as much of the forward 
motion of a glacier is driven by internal deformation within the glacier 
itself, with little or no basal sliding and/or subglacial deformation 
(Shreve, 1984). This view has evolved in recent years, with the recogni-
tion that abrasion (i.e., sediment generation), sediment accretion and 
glacitectonic deformation can take place beneath cold-based ice 
(Waller, 2001; Lloyd Davies et al., 2009). Sub-marginal and ice-
marginal zones of cold-based ice can also be notable zones of till devel-
opment, through the stacking of debris by regular cycles of regelation 
entrainment (Knight, 1997) and by glaciers advancing, over-riding 
and incorporating frontal debris (Hiemstra et al., 2007; Lloyd Davies 
et al., 2009). Warm-based (or temperate) glaciers, by contrast, are gen-
erally regarded as being more efficient at generating subglacial tills 
through enhanced basal sliding, subglacial deformation or a combina-
tion of both. The ability of warm-based glaciers to produce subglacial 
till reflects: (1) the availability of porewater at or adjacent to the ice– 
bed interface; (2) the transmission of strain through the base of the gla-
cier into the subglacial bed; and (3) the availability of materials that can 
be entrained into the subglacial bed (van der Meer et al., 2003; Larsen 
et al., 2004; Piotrowski et al., 2004; Evans et al., 2006; Lee and Phillips, 
2013; Phillips et al., 2018). Porewater availability is the principal control 
as it regulates the amount of ice–bed coupling and in turn the amount 
of strain transmitted into the subglacial bed. With low–moderate 
porewater availability basal sliding will occur, but strain will also be 
transmitted down into the subglacial bed entraining materials that ulti-
mately will accrete as subglacial till. However, if the porewater pres-
sures are high — for example due to an excess of meltwater and/or the 
presence of an impermeable or poorly-drained substrate, ice–bed 
decoupling may occur with minimal strain transmitted into the under-
lying subglacial bed. This can lead to transient phases of fast ice flow 
where the resultant till may either be thin, discontinuous or with glacier 
motion preserved as a melange of deformed parent material (a 
glacitectonite) (Iverson, 2010; Minchew and Meyer, 2020; Narloch 
et al., 2020). In such a scenario, a mappable till sheet may not actually 
be produced during a major ice advance (Lee, 2018; Fig. 4).

3.2.2. Landform evidence — terrestrial terminal moraines 
Terminal moraines are morainic ridges that accreted at a terrestrial gla-

cier margin and mark the maximum extent of a glacier advance. These dif-
fer from recessional moraines that are found up-ice of the terminal 
moraine and record temporary episodes of ice-marginal advance and/or 
stillstand during an overall longer-term pattern of glacier retreat. Terminal 
moraines form through a range of processes and four main types of mo-
raine have been defined (Table 1)  as  well  as  a  range  of  composite  moraines  
which exhibit elements of two or more groups (Evans et al., 2019a).

Proglacial Glacitectonic Landforms incorporate morainic ridges where 
>25 % of the landform is composed of pre-existing and/or syn-tectonic 
materials (Table 1). Pre-existing materials may include reworked Qua-
ternary deposits and commonly bedrock. They are formed by the 
proglacial glacitectonic displacement and thrust-accretion of material 
by glacier-induced stresses. Ice-marginal landforms within this group 
include hill–pole pairs, composite ridges and thrust-block moraines, cu-
pola hills, mega blocks and rafts (Bluemle and Clayton, 1984; Aber et al., 
1989; Aber and Ber, 2007; Phillips et al., 2017; Evans et al., 2021a). Ex-
amples of these features in the UK and Ireland include morainic land-
forms at Kilcummin Head, County Mayo (Vaughan et al., 2024), Lake 
of Menteith in Scotland (Evans and Wilson, 2006)  and  the  steep-sided
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Fig. 4. Plan-view schematic diagrams showing the apparent and actual glacial limit using the edge of a till sheet. (a) Historical interpretation of the edge of a till sheet as a glacial limit. 
(b) Recent developments in the understanding of subglacial deformable beds show that not all ice advances produce tills and/or only thin and discontinuous tills. In such instances an 
interpreted glacial limit which utilises the edge of the till sheet to define the maximum glacier extent can represent a significant under-interpretation of true glacier extent.
conical hills along the north Norfolk coast (Lee et al., 2013; Phillips and 
Lee, 2013). 

Push and squeeze moraines typically form at the sub-marginal to mar-
ginal position at the snout of the glacier (Table 1). Push and squeeze re-
lated processes and landforms represent end member processes with 
both likely to occur in close association (Evans and Hiemstra, 2005; 
Chandler et al., 2016). Pushing corresponds to the lateral bulldozing of 
ice-marginal materials at the snout of an advancing glacier. During 
major ice-marginal advances, materials are often overridden by the 
snout of the glacier and incorporated into the subglacial bed. Pushing 
therefore becomes more relevant during the winter when the snout is 
often frozen to its bed (slab freeze-on; Krüger, 1996), and where gla-
ciers are undergoing progressive retreat, often leading to the develop-
ment of a stepped sequence of recessional push moraines (Evans and 
Twigg, 2002). The morphology of push moraines can vary between 
arcuate-undulating-irregular planforms reflecting the geometry of the 
ice margin and the glacier's behaviour (Sharp, 1984; Evans and Twigg, 
2002). Squeezing occurs during periods of ablation and corresponds to 
the loading of often water-saturated sediments by the glacier, and the 
squeezing of materials via cavities, basal crevasses and other similar 
means. Benn and Evans (2014) describe squeeze moraines as typically 
being steep to vertically sided, making them susceptible to subaerial 
modification (a function of gravity and elevated porewater content) or 
Table 1 
Types of ice-marginal moraine that are present within the geomorphological record (after 
Benn and Evans, 2014). Note that these four landform groups are often not distinctive, and 
many examples are composite features that display elements of several groups. 

Term Definition 

Proglacial Glacitectonic 
Landforms 

Morainic ridges where >25 % of the moraine is 
comprised of pre- or syntectonic materials 
including bedrock that have displaced 
proglacially by glacier-induced stresses. 
Morainic landforms can include features called 
hill–hole pairs, composite ridges and 
thrust-block moraines, cupola hills, 
glacitectonic mega-blocks, and rafts. 

Push and squeeze moraines Ice-marginal moraine ridges produced by 
lateral pushing and vertical loading 
(squeezing). ‘Push’ and ‘squeeze’ processes 
represent end members, and many landforms 
are formed by a variable combination of both.

Dump moraines including 
latero-frontal dump moraines 

Formed by the dumping of supraglacial material 
at the glacier snout by mass flows, falls or 
water-driven transport. 

Latero-frontal fans and ramps Relatively low-angle ice-contact fans composed 
of diamicton, mixed diamicton and sorted 
sediments or entirely sorted sediments.
being deformed by subsequent pushing. Their long-term preservation 
potential within the geomorphological record is likely to be limited. Ex-
amples of push–squeeze moraines described in the UK and Ireland 
occur in northwest Wales (Thomas and Chiverrell, 2007), Lincolnshire 
and Yorkshire (Evans and Thomson, 2010; Evans et al., 2019b, 2024), 
the Cromer Ridge in north Norfolk (Hart, 1990; Lee et al., 2013), offshore 
along the continental margin (Bradwell et al., 2008; Peters et al., 2016) 
and within the North Sea (Dove et al., 2017). 

Dump moraines and larger latero-frontal dump moraines form 
through the accumulation of supraglacial debris at a stationary ice 
front via rock falls, minor mass-flow and water-driven transport 
(Table 1; Benn and Evans, 2014). The size of dump moraines reflects 
the amount of debris accumulation and how long the ice front was sta-
tionary (Owen and Derbyshire, 1989; Lukas, 2003; Evans et al., 2010, 
2018) plus their sensitivity to modification by other processes during 
subsequent ice-marginal readvances (Lukas, 2005). Examples of dump 
moraines in the UK have been reported from the Scottish Highlands 
(Lukas, 2005; Benn and Lukas, 2006; Phillips and Kearsey, 2020; 
Phillips and Merritt, 2024). 

Latero-frontal fans and ramps form through the coalescence of debris 
flow and glaciofluvial sediments at stationary ice fronts (Table 1). These 
landforms tend to form lower-angle features than dump moraines due 
to the lower gradient of the ice front and dominance of mass-flow rather 
than rock fall processes (Owen and Derbyshire, 1989; Krzyszkowski and 
Zieliński, 2002; Evans et al., 2010). Typically, they are composed of 
diamictic sediments, inter-mixed diamictic and sorted sediments, or 
fining-upward sequences of stratified gravels to sands and silts 
(Krzyszkowski and Zieliński, 2002). As with conventional dump moraines 
these types of ice-contact fans are often attributed to overall patterns of 
ice-marginal recession albeit with localised push (Lukas, 2005). Examples 
of latero-frontal fans have been interpreted in northwest Scotland (Benn 
and Lukas, 2006) and the Scottish Highlands (Lukas, 2003). 

Collectively, terminal moraines can be excellent indicators of the 
maximum extent of a glacier. However, terminal moraines do not 
form everywhere along an ice margin reflecting temporal and spatial 
variations in ice-marginal dynamics, material availability, ice–bed trac-
tion and ground conditions. Care needs to be taken to understand the 
true glaciological context of morainic landforms and specifically 
whether they are terminal or minor recessional moraines (Chandler 
et al., 2019). Rigour is also needed in the primary interpretation of ter-
minal moraines especially in more degraded (i.e., older) terrains 
where remote landform evidence is being used to constrain an interpre-
tation. For example, moraine-like ridges could potentially be confused 
with underlying bedrock and/or bedrock structures, or low interfluve 
ridges that separate river valleys.
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Fig. 6. Theoretical representation demonstrating the temporal relationship between the 
actual extent of a glacier and the limit of preserved evidence. Erosion/modification rates 
will initially be faster, but will slow as the feature reaches a dynamic equilibrium with 
the boundary conditions that operate within a given landscape.
3.3. Preservation of geological and landform evidence 

The presence of tills, terminal moraines and other more subtle lines 
of geological and geomorphological evidence is critical evidence for in-
terpreting so-called ‘glacial limits’. However, their practical use within 
palaeo-studies also reflects their preservation within the geological 
and landform records. The preservation potential for tills and morainic 
landforms is generally low and decreases progressively over time. 

Several studies have examined the degradation of till sheets and gla-
cial landform assemblages within recently deglaciated landscapes. These 
studies have shown that higher rates of surface lowering are initially fo-
cussed on steeper terranes (Rose, 1991; Putkonen et al., 2008); but that 
all glacial sediments and landforms will undergo significant long-term 
degradation leading to a progressive topographic smoothing (Putkonen 
and O'Neal, 2006). This typically reflects the often poorly-consolidated 
nature of the glacial sediments and landforms, the presence of 
unequilibrated slopes, free water availability (e.g., seasonal melt) and 
the activity of neotectonic, periglacial and paraglacial landscape processes 
(Ballantyne, 2002; Evans, 2003, 2017; Giles et al., 2017; Murton and 
Ballantyne, 2017; Finlayson, 2020; Murton, 2021; Smith et al., 2021; 
Ballantyne and Murton, 2023). Till sheet and landform degradation can 
however be temporarily buffered, and mechanisms include: (1) rapid 
consolidation (over-consolidation) of a till by drying and/or loading/un-
loading either by the glacier snout or ice-marginal thrust stacking; 
(2) the presence of buried ice within landforms (Tonkin et al., 2016; 
Midgley et al., 2018) although upon melting this can cause rapid land-
scape change and inversion (Everest and Bradwell, 2003); (3) the abun-
dance of relatively free-draining open-framework sediments (Oliva and 
Ruiz-Fernández, 2015); (4) high aridity areas with an absence of vertical 
mixing (e.g.,  frost  heave)  (Morgan et al., 2011); and (5) removal of ice by 
sublimation from glacier forelands by sublimation. 

The longer-term transition to interglacial/interstadial conditions also 
drives significant changes in landscape dynamics as part of the ongoing 
paraglacial adjustment of the landscape, this in turn impacting the stabil-
ity of glacial sediments and landforms (Ballantyne, 2019). Periglacial pro-
cesses, including the development of patterned ground and solifluction, 
typically become restricted to more upland areas. Mass movement pro-
cesses also transition from the development of large rock slope failures 
(in areas with susceptible bedrock and steep slopes) to translational 
slides, debris flows and hillwash on slopes mantled by talus and/or super-
ficial deposits. The overall role of fluvial systems within postglacial land-
scape denudation is complex reflecting local and regional scale 
relationships between topographic gradient, flow regime, sediment sup-
ply and substrate strength. Fluvial dissection is widely believed to be en-
hanced during glacial–interglacial transitions due to high seasonal peak 
river discharges (Bridgland, 2010)  and  during  interglacial  stages  by  ex-
treme floodevents (Macklin et al., 2013). Periods of intense rainfall during 
interglacials can also be significant drivers of landscape denudation, trig-
gering landslides on metastable slopes that have been previously over-
steepened by glacial erosion (Moon et al., 2011) although this can be buff-
ered to a degree by vegetation cover. In the UK, widespread fluvial dissec-
tion has impacted the extent and preservation of evidence from the Late 
Devensian and especially Anglian glaciations (Fig. 5).

Time is also a critical factor in landscape preservation because it dictates 
the duration that landscape smoothing can operate over. This is well-
illustrated in the UK where relict Middle Pleistocene landscapes in central 
and eastern England have been subjected to multiple cycles of temperate 
and periglacial weathering and landscape degradation including (poten-
tially) multiple phases of glaciation. Accordingly, there are far fewer re-
corded examples of Middle Pleistocene ice-marginal landforms in the UK 
compared to those from the Late Devensian or Younger Dryas. Over such 
geological timescales neotectonics also play a significant role in degrading 
relict glacial landscapes, driving long-term crustal uplift and subsidence, 
and critically fluvial dissection (Maddy et al., 2001; Bridgland et al., 
2015; White et al., 2017). Widespread evidence for long-term dissection 
is indicated by the bevelled featheredge of many UK till sheets, fluvial 
incision and river terrace development that occurs down through/beneath 
the base of the till. 

Relative topographic position also plays an important role in regulating 
the preservation potential of glacial deposits and landforms. Unlike other 
parts of continental Europe, there are no major sedimentary basins on-
shore within the UK that lie within the known extent of Quaternary gla-
ciation (cf., Bovey Basin in Devon). Instead, most of the UK landmass 
can be described as interbasinal being situated beyond the margins of 
major sedimentary basins that typically (but not exclusively) occur 
around our continental shelf and margins. The long-term preservation 
potential of glacial deposits and landforms is therefore low over geological 
time scales (i.e., hundreds of thousands to millions of years). This is be-
cause sediment accommodation space within the interbasinal landscape 
is limited and slope, fluvial and other earth surface processes (e.g., 
weathering, periglacial, glacial and paraglacial) are variably acting to 
remobilise interbasinal materials basinwards. Preservation rates tend to 
be greater in lower elevation and lower gradient topographic settings 
(e.g., lowland areas, valley bottoms in upland areas) due to the lower 
magnitude of gravitational processes. By contrast, the preservation poten-
tial on slopes within upland areas is very low due to the propensity of ac-
tive slope processes that can rapidly rework, modify and erode pre-
existing sediments and landforms as well as the potential for reglaciation. 
Preservation potential on the summits of upland areas is also likely to be 
relatively low because, whilst gravitational slope processes may be more 
limited, the elevated relief makes sediments and landforms more suscep-
tible to physical processes such as freeze–thaw and deflation by wind. Ba-
sins, by contrast, are long-term sediment sinks with ongoing cycles of 
sediment burial acting to preserve glacial deposits and landforms (e.g., 
the North Sea Basin). Even in areas of net marine erosion and scouring, 
the winnowing of finer sediments can leave a residual cobble/boulder 
lag which can armour the underlying substrate and increase preservation. 
The significance of relative topographic position is demonstrated by the 
long-term record of glaciation within the UK, the offshore record preserv-
ing a much more detailed recent and longer-term record of glaciation 
than onshore sequences. This is especially evident within the North Sea 
Basin where sequences of Quaternary sediments up to 1 km thick have 
been recorded in the Central Graben (Ottesen et al., 2018). Critically, 2D 
and 3D seismic data demonstrate that significant superpositional
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preservation of evidence for glaciation occurs across the basin, reflecting 
repeated cycles of glaciation, submarine sediment burial and enhanced 
preservation (Graham et al., 2007; Stewart and Lonergan, 2011; Stewart 
et al., 2013; Rea et al., 2018; Newton et al., 2024). Onshore, by contrast, 
limited accommodation space within the interbasinal landscape means 
that evidence for glaciation is frequently removed during subsequent 
phases of glaciation (Bowen et al., 1986; Clark et al., 2004b; Gibbard and 
Clark, 2011; Gibbard et al., 2022). 

3.4. Nomenclature 

As discussed above, the extent of tills and terminal moraines are key 
types of evidence that can provide important information relating to 
former glacier extent. The presence and absence of both features are 
partly a function of glacier dynamics but also of short- to long-term 
preservation. However, preservation potential, especially onshore in 
the UK, is generally low, reflecting the limited accommodation space 
within the landscape coupled with the variable activity of slope, fluvial, 
periglacial and paraglacial processes which act to progressively smooth 
the landscape over time. A so-called ‘glacial limit’ interpreted using 
these common types of data should therefore be viewed as a limit of pre-
served evidence rather than a demonstration of the maximum extent of 
glaciation per se. This means that the true maximum extent of glaciation 
will likely occur down-ice of this limit of preserved evidence and that 
the distance between the two will increase with time (Fig. 6).

4. Refining the limit of preserved evidence for Quaternary glaciation 

4.1. Methodology 

Within the previous section of the paper, we assessed the primary 
types of geological and landform information that can be used to inter-
pret the extent of onshore glaciation within the UK — with till sheets 
and terminal moraines being the key lines of evidence. Both types of ev-
idence are well-developed within the onshore geological and geomor-
phological record, but this information needs to be interpreted with 
care as there are both glaciological and preservation issues that can gen-
erate uncertainty within any interpretation. In short, the key findings 
are that an interpreted glacial limit represents the limit of preserved 
evidence rather than a demonstration of maximum glacial exten t.

To build new linework to refine the onshore limit of preserved evi-
dence for the Anglian and Late Devensian glaciations, a range of digital 
datasets were utilised by this study (Table 2). The key underpinning 
dataset was the British Geological Survey (BGS) Geology 50k (Superficial 
deposits) digital dataset, which shows the UK distribution of mapped su-
perficial geology polygons within published BGS 1:50,000 geological 
maps. The digital dataset was queried to highlight superficial deposits 
that had been mapped as till, diamicton or equivalent lithostratigraphically 
named units. Ice-marginal landforms such as terminal moraines have not 
historically been captured consistently on published geological maps; 
however, some mapped features occur within the published BGS Geology 
50k dataset (e.g., Escrick Moraine Member) and were utilised in this study. 
Terminal moraines reported elsewhere within published literature and 
Table 2 
Table showing the main datasets used in the interpretation of new linework, how the datasets

Dataset Practical use

BGS Geology 50k Superficial Superficial geology linework used to constrain the 
mapped presence of ‘till’ or other units of interest.

BGS Borehole Geology database Interpretations of boreholes and other site investigat
reports used to constrain the spatial presence of ‘till’

NEXTMap Britain DTM Digital Terrain Model (DTM) used as a topographic b
tiled at 50 m horizontal resolution. 

OS 1:25,000 Scale Colour Raster OS topographic base.
BGS Buried Valleys Used to further constrain subglacial environments.
BRITICE Specific landform layers utilised to constrain ice-mar
other datasets (e.g., BRITICE) were also used to build an interpretation. 
Much of this data is presented at a lower spatial resolution than the BGS 
Geology 50k dataset, nevertheless it could be used to constrain new inter-
pretations where appropriate. 

Topographic datasets including the NEXTMap Digital Terrain Model 
(DTM) including hillshade and slope model derivatives, plus the OS 
1:25,000 scale colour raster were employed to help interpret landforms 
(e.g., moraines) as well as constraining the edges of mapped till sheets 
where geological mapping coverage was limited. 

BGS also holds over 1 million digital borehole and site investigation 
records from across the UK with individual records ranging in age from 
the 1860s through to the 2020s exhibiting varying levels of quality, de-
scriptive detail and spatial accuracy (e.g.,  x–y location, unit thickness). 
These boreholes and the separate BGS Borehole Geology (BOGE) data-
base were used to test and refine the mapped occurrence of till and re-
lated deposits. BOGE includes geological interpretations of borehole and 
site investigation records, thus a filter was run on the database to extract 
records that contained interpreted units of till and diamicton. Note that 
not all held borehole records have corresponding borehole interpreta-
tions, and most interpreted boreholes coincide with areas where vari-
ous BGS geological studies (e.g., 3D geological models, linear route 
assessments, site investigations) have been commissioned over the 
past 30 years. The location of the filtered boreholes was then plotted 
to identify outlier boreholes that contain interpreted till and/or 
diamicton that occur beyond the previously accepted till extent and/or 
‘glacial limit’. The original borehole logs for all outlier records were 
checked manually to validate the interpretations. Whilst most outlier 
records were valid, till had been misinterpreted within a small propor-
tion of borehole records. These erroneous interpretations occur along 
parts of the historical glacial limits where sands and gravels have been 
mixed with weathered mudstones (e.g., Paleogene strata) and now 
form discontinuous veneers or ribbons of slope deposits (e.g., head or 
colluvium) rather than till .

Digitisation of new linework was undertaken using the standard GIS 
software (ArcGIS Pro) at a scale of between 1:10,000 and 1:20,000 de-
pending on the resolution of the constraining data. A subtle GIS smooth-
ing function was applied to the linework to enhance its cartographic 
presentation. Segments of reconstructed linework were assigned to 
one of three constraint classes to capture how the linework was 
interpreted and highlight the relative levels of uncertainty — mapping 
constrained, borehole constrained and conjectural.  For  mapping 
constrained and borehole constrained sectors of linework interpreted 
from published geological mapping/geomorphology or borehole infor-
mation, the linework was drawn around the outer edge of a narrow 
buffer (typically 50 m) to encompass the projected feather-edge of the 
till. For mapped or reported terminal moraines, the linework was recon-
structed along the basal concave slope break on the inferred up-ice side 
of the landform using the DTM to represent the minimum extent of ice. 
Conjectural lines were used where there was no evidence available, but 
the linework could be constrained between two reliable control points 
using, for example, a topographic feature, constant elevation, or glacio-
logical rules (i.e., lobate margins will form in mudstone-dominated 
areas). Conjectural linework is subjective and accordingly carries a
 were used and their accessibility. 

Accessibility 

Open Access via BGS GeoIndex. 

ion 
. 

Corporate dataset but all borehole logs are Open Access and 
available by the BGS GeoIndex portal. 

ase, Used under licence from Intermap Technologies. 

Used under licence from the Ordnance Survey. 
Open Access via BGS GeoIndex or BGS Datasets. 

ginal locations. https://www.sheffield.ac.uk/geography/research/projects/britice 
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higher level of uncertainty. Whilst conjectural linework can be used with 
caution, there were notable instances where there was no constraining 
information to interpret the glacial limit, and in these cases no interpre-
tation was attempted. 

4.2. Reconstructed limit of preserved evidence for glaciation 

The limit of preserved evidence for the onshore extent of both the An-
glian and Late Devensian glaciations is shown in Figure 7. Further de-
scription and more detailed regional summaries that communicate the 
relative uncertainty of the reconstructed linework are provided below. 

4.2.1. Anglian glaciation 
The limit of preserved evidence for the Anglian Glaciation shows a gen-

eral agreement with the historical linework but contains much greater 
local-scale detail (Fig. 8). The eastern sector, located to the north and 
east of London, generally follows the mapped extent of the Anglian till 
Fig. 7. Reconstructed limits of preserved evidence for both the Anglian (black line) and Late Deven
and readers are referred to Figures 8–11 for further information. Derived in part from DTM of 
Map”. Jan 4, 2024. Esri Sources: Esri, Ordnance Survey. 
sheet (Clayton, 1957; Gibbard, 1977; Allen et al., 1991; Price, 2019), al-
though its preserved extent has been refined based on geological map-
ping and borehole information. Around Colchester, for example, the 
limit of preserved evidence has been extended eastwards by approximately 
6.5 km reflecting the occurrence of till within boreholes to the east and 
south of Colchester (Fig. 9a). Significant areas of linework between 
Chelmsford and Colchester are conjectural, reflecting widespread postgla-
cial fluvial incision of the Paleogene bedrock and removal of the till 
(Clayton, 1957). Linework has also been modified around Maldon 
reflecting new understanding of the Danbury–Tiptree Ridge (Fig. 9a). 
During the Anglian Glaciation, the ridge acted to constrain the morphol-
ogy of the ice margin enabling the nucleation of a marginal-ridge com-
plex, with localised breaching enabling small lobes of ice to extend 
southeastwards beyond the confines of the landform (Leszczynska et al., 
2018). The preservation and form of this morainic ridge are intriguing 
given  its  age  and  the  widespread  regional  erosion  of  the  till  and  underly-
ing bedrock. Much like the Cromer Ridge moraine in north Norfolk (Lee
sian (blue line) glaciations. No differentiation is made here for uncertainty of the linework 
Great Britain at 5 m resolution © Bluesky International Limited. Esri “World Topographic 
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Fig. 8. The limit of preserved evidence for the Anglian Glaciation onshore in southern UK showing the distribution of underpinning evidence for different segments of linework. The Anglian 
glacial limit of Booth et al. (2015) is also indicated for comparison. Locations of Figure 9a and b are indicated by the black boxes. Derived in part from DTM of Great Britain at 5 m resolution 
© Bluesky International Limited. 
et al., 2013), the relative preservation of the landform is likely linked to its 
glacitectonic accretion on a pre-existing bedrock high. 

Between Chelmsford and Brentwood, the limit of preserved evidence 
is well constrained by geological mapping and borehole data albeit with 
the interpreted evidence indicating a more crenulate margin to the till 
sheet than previously indicated (Fig. 9b). Refinement of the linework 
between Brentwood and St Albans (Fig. 9b) supports the previously-
held interpretation of the existence of several prominent ice lobes 
(Gibbard, 1977). Further to the west, between St Albans and Leighton 
Buzzard, the mapped extent of till helps to refine the preserved limit 
of evidence to up to 5 km inside of the previous linework (Fig. 9b). 
Around Moreton-in-Marsh, Gloucestershire, Anglian aged glacial de-
posits form an isolated outlier resting on Jurassic bedrock and extend 
northwards as a discontinuous body into the South and West Midlands 
(Shotton, 1953; Bishop, 1958; Sumbler, 1983, 2001). The geometry of 
these deposits suggests that they have been heavily eroded and there-
fore their proximity to the ice margin remains unclear.

To the west of the Cotswold Hills, heavily dissected bodies of till and 
other glacial deposits have been recorded along the western flanks of 
the Malvern Hills (Richards, 1999), within the lower Severn Valley 
(Maddy et al., 1995) and Clevedon near Bristol (Gilbertson and 
Hawkins, 1978). But their proximity to any postulated extent of Anglian 
ice remains unclear and no attempt is made to reconstruct the limit of 
preserved evidence through this area (Fig. 8). The Anglian limit is also 
tentatively reconstructed locally around the mapped extent of till at 
Fremington, north Devon. As previously stated, an Anglian age is the 
likely maximum age of the unit and for that reason is included within 
this interpretation. 

4.2.2. Late Devensian Glaciation 
The revised limit of preserved evidence for the Late Devensian Glacia-

tion is in good agreement with other published interpretations with 
local refinement (Fig. 10). In the eastern sector, the occurrence of Late 
Devensian glacial deposits in north and northwest Norfolk corresponds 
to the southern-most known expansion of the North Sea Lobe of the 
Last British Irish Ice Sheet (Evans et al., 2019b, 2021b). The limit of pre-
served evidence is demonstrated by the mapped extent of till (Holkham 
Till) and localised terminal moraines (Pawley et al., 2006; Moorlock 
et al., 2008; Evans et al., 2019b), with local refinements based on borehole 
information joined by conjectural linework. Within The Wash, only occa-
sional boreholes contain Holkham Till, so the interpreted linework is 
largely conjectural. The nature of subglacial bed conditions — dominated 
by low-permeability Jurassic mudstones, suggests that fast ice flow condi-
tions may have developed, with ice potentially extending southwards 
through The Wash and into the Fen Basin. However, no boreholes 
containing Holkham Till have yet been identified within the Fen 
Basin. Through Lincolnshire and Holderness, till has been mapped 
discontinuously along the east-facing dip slope of the chalk escarp-
ment and the edge of this till body is interpreted as the limit of pre-
served evidence. Locally, the western edge of the till sheet is 
dissected by several mis-fit or dry valleys demonstrating significant 
chalk mass-wastage within the Lincolnshire and Yorkshire Wolds 
following deglaciation (Fig. 11a).

On the northern flanks of Flamborough Head, the limit of preserved 
evidence is constrained largely by mapped till (Fig. 11a), with ribbons 
of discontinuous recessional moraine ridges occur up-ice (north) of 
the mapped till (Evans et al., 2017, 2024). The limit of preserved evidence 
is extended conjecturally into the Vale of Pickering and is pinned locally 
by the Wykeham Moraine (terminal moraine; (Fig. 11a)) (Evans et al., 
2017; Fairburn, 2019; Eddey et al., 2022). Extending around the Cleve-
land Hills between Scarborough and Thirsk, the limit is partly 
constrained by the mapped extent of till including local refinements 
from occasional boreholes (Fig. 11a). The geometry of the till sheet in-
cludes discontinuous bodies of till extending upslope into several of
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Fig. 9. Local detail of the limit of preserved evidence for the Anglian Glaciation for the area around Colchester (a) and further southwest to the north of London (b). The historical interpre-
tation of the glacial limit of Booth et al. (2015) is shown for comparison. See Figure 7 for the location of the two figures. Derived in part from DTM of Great Britain at 5 m resolution © 
Bluesky International Limited.
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Fig. 10. The limit for preserved evidence onshore for the Late Devensian glaciation showing the distribution of underpinning evidence for different segments of linework. The locations of 
three inset maps (Fig. 11) showing detail of the interpretation are also indicated. Derived in part from DTM of Great Britain at 5 m resolution © Bluesky International Limited.
the deeply incised valleys. Further to the south, the mapped extent 
of till associated with the Vale of York ice lobe coincides with the 
Escrick Moraine (Fig. 11a; Ford et al., 2008). Extending along the 
southern and western edge of the Pennines and Peak District to-
wards Stoke-on-Trent, the limit of preserved evidence is constrained 
by the mapped extent of till and conjecturally based upon elevation 
where till is absent. The discontinuous nature of the mapped till 
sheet in this sector indicates that substantial erosion of the lower 
slopes of the Pennines and Peak District has occurred following de-
glaciation. 
Passing south and southwestwards across Shropshire, the West Mid-
lands and Welsh Borders, the Late Devensian till sheet was accreted by 
Irish Sea ice that extended through the Cheshire Basin and glaciers em-
anating from upland ice dispersal centres in neighbouring Wales 
(Fig. 10; Boulton and Worsley, 1965; Thomas, 1989; Worsley, 2005; 
Parkes et al., 2009; Chiverrell et al., 2021). Northward retreat of the 
ice margin from its maximum led to the development of a complex pat-
tern of moraine belts, glacial lake basins and outwash fans (Chiverrell 
et al., 2021). The limit of preserved evidence is indicated primarily by 
the mapped extent of till that can be traced discontinuously between
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Fig. 11. Detailed maps of local areas of the limit of preserved evidence for the Late 
Devensian with local points of interest: (a) Eastern Sector — Yorkshire; (b) West 
Midlands and the Welsh Borders; (c) Welsh Borders and South Wales. Derived in part 
from DTM of Great Britain at 5 m resolution © Bluesky International Limited.
Cannock and Hereford (Fig. 11b; Eastwood et al., 1925; Morgan, 1973; 
Old et al., 1991; Powell et al., 2000). The till has been heavily dissected 
by glaciofluvial/fluvial erosion where the limit of preserved evidence is 
largely conjectural. To the northwest of Birmingham, the till limit is typ-
ically well constrained by geological mapping and refined locally by 
borehole data. Extending south-westward, the mapped extent of the 
till is confined to the north and west of several major bedrock escarp-
ments, including Wenlock Edge. Localised ice breaching of Wenlock 
Edge is indicated by small lobes of mapped till that extend down and be-
yond the eastern slopes of the ridge (Fig. 11b). 

Between Wenlock Edge and Hereford, ice emanating from Wales ex-
tended into a broad lowland area containing the mid parts of the Wye 
and Lugg catchments with the limit of preserved evidence constrained 
mainly by the mapped extent of till. To the south of Hereford, the 
interpreted extent of the preserved evidence is conjectural: inferred by 
linking the elevation of the till sheet adjacent to Hereford with that around 
the northern and western margins of the Black Mountains. Ice emanating 
from the Brecon Beacons via the Usk Valley accreted a mapped body of till 
that drapes the valley flanks and splays to form a broad lobe that extends 
eastwards beyond Abergavenny and Pontypool (Lewis and Thomas, 2005; 
Thomas and Humpage, 2005; Carr, 2020). Locally, the limit of preserved ev-
idence is constrained by terminal moraines, such as the Llanvihangel Mo-
raine situated to the north of Abergavenny (Fig. 11c). In South Wales, 
west of Cardiff, the mapped extent of till largely forms the limit of the pre-
served evidence of the Late Devensian, refined locally by boreholes, with 
small sections of conjectural linework where till has been eroded by mod-
ern drainage (e.g., adjacent to the Taff and Ebbw valleys). Swansea and 
Port Talbot are also underlain by thick sequences of glacial till, with 
overdeepened meltwater tunnel valleys occurring beneath the rivers 
Neath and Tawe (Wright, 1991). Ice likely extended into the present off-
shore area of Swansea Bay (Gibbard et al., 2017); however, recent geolog-
ical mapping has indicated that possible terminal moraines may in fact 
potentially be bedrock (Carboniferous) ridges (Rhian Kendall, personal 
communication, 2023). 

To the southwest of Swansea in The Gower, evidence for grounded 
Late Devensian ice and the limit of preserved evidence is more conjectural 
but pinned by localised bodies of mapped till and the Paviland Moraine 
(Fig. 11c; Hiemstra et al., 2009; Shakesby et al., 2018). It should be noted 
that the age of the Paviland Moraine has historically courted contro-
versy with its age being alternatively interpreted as being Middle Pleis-
tocene (Bowen, 2005). Further west in Pembrokeshire, mapped Late 
Devensian tills are highly discontinuous which has driven multiple his-
torical interpretations of known ice extent (Campbell and Bowen, 
1989). New linework created as part of this study is highly conjectural 
but follows the general southern margin of the dissected till sheet 
(Fig. 11c) and is in general accordance with other regional interpreta-
tions (Glasser et al., 2018). The southern-most known onshore limit of 
preserved evidence for Late Devensian ice extent is constrained by 
mapped bodies of till and terminal moraines that occur on several of 
the northern islands within the Isles of Scilly (Fig. 10; Mitchell and 
Orme, 1967; Scourse, 1991; Hiemstra et al., 2006). These observations 
are linked (offshore) between the islands by conjectural linework. Re-
cent research has demonstrated that the tills and landforms within 
southwest Wales and the Isles of Scilly correspond to the southward ex-
pansion of the Irish Sea Ice Stream which, at its maximum, reached the 
edge of the continental shelf within the Celtic Sea (Praeg et al., 2015; 
Smedley et al., 2017; Glasser et al., 2018; Scourse et al., 2021). No at-
tempt has here been made to interpret the offshore extent of evidence 
between mainland UK and the Isles of Scilly. 

5. Conclusions 

• The current understanding of the long-term glacial history of the UK 
during the Quaternary is reviewed within this paper. Significant de-
velopments have been made during the past decade with widespread 
demonstration that our UK Continental Shelf has been repeatedly
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glaciated throughout the Quaternary by ice emanating from highland 
dispersal centres. 

• The types of geological and landform evidence that can be used to in-
terpret the extent of Quaternary glaciations are also reviewed. The pri-
mary evidence historically utilised in reconstructing the extent of 
major glaciations includes the edges of major till sheets and terminal 
moraines. However, the presence and/or absence of this evidence can 
reflect a range of primary (e.g., genetic) and secondary (e.g., preserva-
tion) processes that operate within the landscape. 

• Preservation is an often-overlooked aspect of reconstructing the ex-
tent of former periods of glaciation, with progressive topographic 
smoothing driven by glacial and postglacial (e.g.,  periglacial,
paraglacial, fluvial, slope, marine) processes. The impact of these pro-
cesses magnifies over time reflecting long-term landscape degrada-
tion under different climatic regimes. The position of the evidence 
within the landscape is also a critical preservation factor with typically 
much greater preservation potential in basinal as opposed to 
interbasinal areas. This reflects higher sedimentation rates within ba-
sinal areas which act to bury and preserve pre-existing sediments and 
landforms, compared to interbasinal areas where gravity-driven land-
scape processes (e.g., slopes and rivers) are actively reworking and 
recycling landscape materials. Within the UK Quaternary context, 
our spatial record of glaciations reflects this process with enhanced 
long-term preservation on the UK Continental Shelf and more limited, 
fragmentary preservation onshore .

• An assessment of the historically-used terminology recommends 
abandoning usage of the term ‘glacial limit’ except in modern environ-
ments where its position can be accurately interpreted (e.g.,  by  direct  
observation, remote sensing). For geological analogues, it is recom-
mended that the term limit of preserved evidence is adopted, with 
the acknowledgement that, over time, the distance between the 
limit of preserved evidence and the glacial limit will increa se.

• The limit of preserved evidence for both the onshore Anglian and Late 
Devensian glaciations is presented. Linework is classified according 
to how the position is constrained (e.g., by mapping, boreholes, con-
jectural) enabling users to understand how the interpretation has 
been justified and the associated levels of uncertainty. 
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